整流橋引腳熱阻假設(shè)整流橋焊接在PCB板上,其引腳的長(zhǎng)度為12.0mm(從二極管的基銅板到PCB板上的焊盤),則整流橋一個(gè)引腳的熱阻為:
在整流橋內(nèi)部,四個(gè)二極管是分成兩組且每組共用一個(gè)引腳銅板,因此整流橋通過引腳散熱的熱阻為這兩個(gè)引腳的并聯(lián)熱阻:
一方面由于PCB板的熱容比較大,另一方面冷卻風(fēng)與PCB板的接觸面積較大,其換熱條件較好,假設(shè)其PCB板的實(shí)際有效散熱面積為整流橋表面積的2倍,

一般而言,對(duì)于損耗比較小 lt;3.0W)的元器件都可以采用自然冷卻的方式來解決元器件的散熱問題。當(dāng)整流橋的損耗不大時(shí),可采用自然冷卻方式來處理。此時(shí),整流橋的散熱途徑主要有以下兩個(gè)方面:整流橋的殼體(包括前后兩個(gè)比較大的散熱面和上下與左右散熱面)和整流橋的四個(gè)引腳。通常情況下,整流橋的上下和左右的殼體表面積相對(duì)于前后面積都比較小,因此在分析時(shí)都不考慮通過這四個(gè)面(上下與左右表面)的散熱。

整流橋殼體正面表面的溫度分布。從上圖可以看出,整流橋殼體正面的溫度分布是極不均勻的,在熱源(二極管)的正上方其表面溫度達(dá)到109 ℃,然而在整流橋的中間位置,遠(yuǎn)離熱源處卻只有75 ℃,其表面的溫差可達(dá)到34℃左右。這主要是由于覆蓋在二極管表面的是導(dǎo)熱性能較差的FR4(其導(dǎo)熱系數(shù)小于3.0W/m.℃),因此它對(duì)整流橋殼體正表面上的溫度均勻化效果很差。同時(shí),這也驗(yàn)證了為什么我們?cè)诓捎谜鳂驓んw正表面溫度作為計(jì)算的殼溫時(shí),對(duì)測(cè)溫?zé)犭娕嘉恢玫姆胖貌煌?,得到的結(jié)果其離散性很差這一原因。圖8是整流橋內(nèi)部熱源中間截面的溫度分布。由該圖也可以進(jìn)一步說明,在整流橋內(nèi)部由于器封裝材料是導(dǎo)熱性能較差的FR4,所以其內(nèi)部的溫度分布極不均勻。我們以后在測(cè)量或分析整流橋或相關(guān)的其它功率元器件溫度分布時(shí),應(yīng)著重注意該現(xiàn)象,力圖避免該影響對(duì)測(cè)量或測(cè)試結(jié)果產(chǎn)生的影響。

整流橋作為一種功率元器件,非常廣泛。應(yīng)用于各種電源設(shè)備。
其內(nèi)部主要是由四個(gè)二極管組成的橋路來實(shí)現(xiàn)把輸入的交流電壓轉(zhuǎn)化為輸出的直流電壓。
1、富士、英飛凌、三菱、西門康全系列IGBT產(chǎn)品;
2、CDE、EACO、日立全系列電容產(chǎn)品;
3、富士、三菱、英飛凌、西門康、ABB、三社、IR、IXYS、可控硅、單管、整流橋產(chǎn)品;
4、建準(zhǔn)全系列風(fēng)機(jī);
5、CONCEPT及驅(qū)動(dòng)板;
6、富士通單片機(jī)及其它配套產(chǎn)品
所有評(píng)論僅代表網(wǎng)友意見,與本站立場(chǎng)無關(guān)。